
Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 144 | P a g e

A Survey of String Matching Algorithms

Koloud Al-Khamaiseh*, Shadi ALShagarin**
*(Department of Communication and Electronics and Computer Engineering, Tafila Technical University,

66110, Tafila, Jordan)

** (Computer and Information Technology Center, Tafila Technical University, 66110, Tafila, Jordan)

ABSTRACT

The concept of string matching algorithms are playing an important role of string algorithms in finding a place

where one or several strings (patterns) are found in a large body of text (e.g., data streaming, a sentence, a

paragraph, a book, etc.). Its application covers a wide range, including intrusion detection Systems (IDS) in

computer networks, applications in bioinformatics, detecting plagiarism, information security, pattern

recognition, document matching and text mining. In this paper we present a short survey for well-known and

recent updated and hybrid string matching algorithms. These algorithms can be divided into two major

categories, known as exact string matching and approximate string matching. The string matching classification

criteria was selected to highlight important features of matching strategies, in order to identify challenges and

vulnerabilities.

Keywords - String matching, Intrusion Detection Systems (IDS), exact string matching, approximate string

matching.

I. INTRODUCTION
A string searching algorithm aligns the pattern

with the beginning of the text and keeps shifting the

pattern forward until a match or the end of the text is

reached. Let Σ be an alphabet (finite set). The Σ may

be a usual human alphabet (for example, the letters A

through Z in English). Other applications may use

binary alphabet (Σ = {0, 1}) or DNA alphabet (Σ =

{A, C, G, T}) in bioinformatics [1].

The general approaches for string matching

algorithms work as follows. They scan the text using

a window of the text whose size is generally equal to

m. For each window of the text they check the

occurrence of the pattern (this specific work is called

an attempt) by comparing the characters of the

window with the characters of the pattern, or by

applying transitions on some kind of automaton, or

by using some kind of filtering method. After

achieving a match of the pattern or after a mismatch

they shift the window to the right by a finite number

of positions. This mechanism is usually called the

sliding window mechanism. Then they repeat the

sliding window mechanism until the right end of the

window goes to the right end of the text [2].

The variety of known string matching algorithms

creates the impression that the problem space is large,

and hard to explore and address, and it is difficult to

understand their similarities and differences.

The problem of string matching is well

researched. This paper proposes a survey of string

matching algorithms. In order to structure the string

matching field and give a clear view of the problems

and solution space.

You will see that along with classification, we

provide example of existing mechanisms. We do not

pretend that this survey is detailed, since many levels

could be divided into several deeper classes.

Also, new mechanisms are likely to appear, thus

will add new levels to our work.

Our main objective was to select several

important features of string matching mechanisms

that might help researchers improve better solutions.

It is important not to confuse the reader with a too

extensive detailed classification. This work will be

further extended by other researchers. We also do not

pretend that classes divide string matching algorithms

in an exclusive manner, i.e. that an instance of a

particular string matching algorithm must be

classified into a single class based on a given

criterion. It is possible for algorithm to be comprised

of several mechanisms, each of them belonging to a

different class.

This paper does not propose any specific string

matching algorithm. Even though we point out

vulnerabilities in certain classes of string matching

algorithms, our purpose is not to criticize, but to

describe and attract attention to the existing problems

so that they might be solved.

Following this introduction, Section 2 proposes

the string matching algorithms survey. Section 3

provides an overview of related work. Section 4

discusses how to use the survey, and Section 5

concludes the paper.

RESEARCH ARTICLE OPEN ACCESS

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 145 | P a g e

II. SURVAY OF STRING MATCHING

ALGORITHMS
In order to devise a survey of string matching

algorithm, we observe the means used to answer two

types of search models: (a) is a word (depends on the

language); (b) is any sequence starting in an index-

point. In order to these models, the answer models

are: Exact match and approximate match

respectively.

In the remainder of this section we review the

recent updated and hybrid algorithms.

2.1 Exact String Matching

The exact string matching algorithms deal with

finding all not part occurrences of pattern P in text T.

We classify exact string matching approaches based

on different character comparison methods. We

differentiate between classical, deterministic finite

automata, bit-parallelism and hashing string matching

algorithms.

2.1.1 Classical Method

Classical string searching algorithms are based

on character comparisons.

Brute-Force Algorithm: This algorithm could be

considered the simplest string matching algorithm,

since it performs character comparisons between the

scanned text substring and the complete pattern from

left to right. In the case of a mismatch or a complete

match it shifts exactly one position to the right. It

requires no preprocessing phase and no extra space

[3].

Knuth-Morris (KMP) Algorithm 1977: This algorithm

searches for occurrences of a pattern P within a main

text X from left to right by employing the observation

that when a mismatch occurs, what is the most we

can shift the pattern so as to avoid redundant

comparisons, thus benefiting from previously

matched characters. This algorithm provides the

advantage that the pointer in the text is never

decremented [4].

Boyer-Moore (BM) Algorithm 1977: Is considered

the basic and the best algorithm for single pattern

matching algorithms and is used by Snort. BM

algorithm matches pattern suffix from right to left

and it maintains two heuristics in the case of

mismatch. The first, called bad character heuristic in

which the search pattern is shifted to align the

mismatched character with the rightmost position

where the mismatched character placed in the search

pattern. The second, called good suffix heuristic, in

which the mismatch occurs in the middle of the

search string. Therefore the search pattern is shifted

to the next occurrence of the suffix in the string [5].

The Boyer-Moore-Horspool (BMH) Algorithm 1980:

It is based on the bad character search, and presented

two searching procedures with simple BM [5] as

search for the first character and scan for the lowest

frequency character [6].

Apostolico-Giancarlo Algorithm 1986: In this

approach all the suffixes of the pattern found in the

text are remembered and then the shifts computed

accordingly at the end of each attempt [7].

The Quick Search (QS) Algorithm 1990: This

algorithm is a simplification of the Boyer Moore

algorithm [5], its uses only the bad character shift [8].

Very fast in practice for short patterns and large

alphabets [9].

The Boyer-Moore-Smith (BMS) Algorithm 1991: This

algorithm benefits from taking the maximum shift

value between the computed shifts with the text

character just next the rightmost text character and

the shift using the rightmost text character [10].

Colussi Algorithm 1991: This algorithm is an

improvement of the Knuth Morris Pratt algorithm [4],

where the set of pattern positions are divided into two

disjoint subsets. The positions in the first set are

scanned from left to right and when no mismatch

occurs the positions of the second subset are scanned

from right to left [11].

Raita Algorithm 1992: It is a tuned form from Boyer-

Moore-Horspool algorithm [6]. Here, the search

strategy start by comparing first the rightmost

character of the window against its counterpart in the

pattern, and after a match, by further comparing the

leftmost character of the window and the leftmost

character of the pattern. After that, the remaining

characters are compared from right to left until a

complete match or a mismatch occurs [12].

5The Turbo-BM (TBM) Algorithm 1994: This

algorithm based on remembering the substring of the

text that matched a suffix of the pattern during the

last character comparisons [13].

Berry-Ravindran Algorithm 1999: Is an improvement

of the Quick-Search algorithm [8], which based on

the bad character rule that can be obtained by making

use of a fast loop (or character unrolling cycle) [14].

2.1.2 Deterministic Finite Automaton (DFA)

Method

Deterministic Finite Automaton (DFA) is a data

structure that stores all the suffixes or prefixes of a

string, enabling fast string matching. This method

based on converting the general automaton into a

deterministic one and reduces the states and the

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 146 | P a g e

memory requirements. It has a linear execution time

and also consumes more memory if the data structure

is not compressed [15].

Automaton Matcher Algorithm 1974: Is the first

linear algorithm based on deterministic automata, it

scans the text character by character, from left to

right, performing transitions on the automaton [16].

The Reverse Factor (RF) Algorithm 1994: This

algorithm performs character comparisons from right

to left using the smallest suffix automaton of the

reverse pattern. The preprocessing phase requires

linear time and space in the length of the pattern [13].

2.1.3 Bit Parallelism Method

Bit parallelism uses the essential parallelism of

the bit manipulations inside computer words to

perform many operations in parallel.

Aho-Corasick (AC) Algorithm 1975: Is an extension

for Knuth-Morris-Pratt algorithm [4], by introducing

automata. AC scans the characters one by one

without any shift. At the beginning stage, AC [17]

builds a Trie based state machine using the patterns

to be matched. The Trie starts with empty root node

(non-matching state). Each character to be matched

in the patterns adds a state to the Trie starting at the

root and going to the end of the pattern. Failure links

points from each node to the longest prefix that leads

to a partial match in the Trie. The state machine is

traversed until a matching state is reached. Fig 1

shows a Trie constructed from the following strings

{chart, ear, arch}. The dashed lines show the failure

links, however all states failure links to the idle state

are not shown. This gives a clear picture of Trie

complexity for a small set of patterns. AC is a linear-

time algorithm which makes it optimal for the worst

case. However, AC preprocessing time and

complexity increases almost exponentially with the

number of characters. In addition to that, the state

machine needs to be rebuilt every time anew pattern

is added to the signature data base [17] [18].

Commentz-Walter Algorithm 1979: This algorithm

combines the Boyer-Moore [5] technique with the

Aho-Corasick algorithm [17]. In the preprocessing

stage the algorithm constructs a state machine from

the patterns to be matched. While in searching stage

it based on the idea of Boyer-Moore algorithm [5].

The length of matching window is the minimum

pattern length. And start scanning the characters of

the pattern from right to left. In case of a mismatch or

complete pattern match it uses a precomputed shift

table to shift the window to the right [19].

Shift-Or (SO) algorithm 1992: This based on a

bitwise technique. It represent the state of the search

as a number, where each search step costs a small

number of arithmetic and logical operations. Its

efficient if the pattern length is no longer than the

memory word size of the machine [20].

Backward Nondeterministic DAWG Matching

(BNDM) Algorithm 1998: This algorithm uses a

nondeterministic suffix automaton that is simulated

using parallelism and encoding. Specifically, it works

by shifting a window of length m over the text, for

each window alignment, it searches for the pattern by

scanning the current window backwards and updating

the automaton configuration accordingly [21].

Backward-Oracle-Matching (BOM) Algorithm 1999:

Is one of the most efficient algorithms especially for

long patterns. This algorithm moves a window of size

m on the text. For each new position of the window,

it searches for the pattern by scanning the current

window backwards to get secure shift [22].

2.1.4 Hashing Method

Hashing provides a simple method to avoid a

quadratic number of character comparisons in most

practical situations.

Figure 1: AC state machine for {chart, ear, arch}

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 147 | P a g e

Karp-Rabin (KR) Algorithm 1987: This algorithm

computes the hashing function for each m-character

substring in the text and check if it is equal to the

hashing function of the pattern [23] [24].

Wu-Manber (WM) Algorithm 1994: This algorithm

based on Boyer-Moore algorithm [5]. It uses the bad-

character shift, and considers the characters from the

text in blocks of size B instead of one by one; this

will expands the effect of Bad-character shift. Also it

uses hash table to index the patterns in the actual

matching phase. The performance of the Wu-manber

is dependent on the minimum length of the patterns.

In preprocessing stage three tables (SHIFT, a HASH,

and a PREFIX) are built.

An example is shown in Fig 2. The scanning phase

traverses the text for the occurrences of any or all

patterns by computing the hash value for the current

block from the text. Then checks the SHIFT table

value corresponding to this hash value, if it greater

than zero, it shifts the text and computes the hash

value for the new block. On the other hand, the value

of the SHIFT table equals zero, the HASH and

PREFIX tables are checked for matching the actual

pattern against the text directly [25].

2.2 Approximate String Matching

The approximate string matching approach is a

generalization of the exact string matching approach

that involves finding substrings of a text string close

to a given pattern string.

More specifically, the approximate string

matching approach can be formally stated as follows:

Let a given alphabet Σ, and a short pattern string P of

length m, a large text string X of length n with m ‹‹ n,

an integer k ≥ 0 and a distance function d.

Approximate string matching approach consists of

finding all the substrings S of T such that d(P, S≥ k)

[26]. In general, in string matching applications the

most interesting operations are: (a) substation of one

character with another single character, (b) deleting

one character from the given string, and (c) inserting

a single character into the given string [27]. For

distance functions; there are several functions

implementing this process, we will consider only two

very well-known functions, which are: the Hamming

distance function, and Levenshtein distance function

[28] [29].

Firstly, Hamming distance [28] is the number of

positions with mismatching characters between two

strings of equal length. So its perform substitution

only. We call the approximate string matching

algorithm with d Hamming distance string matching

with k mismatches. Secondly, Levenshtein distance

[29] is the minimum number of character insertions,

deletions and substitutions that required transforming

of one string to the other. We call the approximate

string matching algorithm with d Levenshtein

distance string matching with k differences (or k

errors).

Figure 2: SHIFT, HASH, and PREFIX tables

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 148 | P a g e

The reasons for introducing approximate string

matching are: low quality of text, heterogeneousness

of databases, spelling errors in the pattern or text,

searching for foreign names and searching with

uncertainty [9]. We classify approximate string

matching approaches based on different methods

employed in searching phase; we differentiate

between classical/dynamic programming,

deterministic finite automata, bit-parallelism,

counting and filtering string matching algorithms.

2.2.1 Classical/dynamic programming Method

Classical method as we mentioned earlier in

exact string matching based on character

comparisons. Dynamic programming approach also

is a classical solution that computes the distance

between strings [30].

Brute-Force algorithm (BF) Algorithm: This

algorithm could be considered the simplest string

matching algorithm, since it performs character

comparisons between the scanned text substring and

the complete pattern from left to right. In the case of

a mismatch or a complete match it shifts exactly one

position to the right. It requires no preprocessing

phase and no extra space to count the number of

mismatches found. If more than k has been found,

shifts exactly one position to the right. At the end of

the pattern we report an approximate occurrence [31].

Sellers Algorithm 1980: It is based on dynamic

programming. It is try to find all approximate

occurrences of P in the X [32].

Diagonal Transition Algorithm 1985: This algorithm

based on computing in constant time the positions

where the values along the diagonals are incremented

[33].

Landau–Vishkin (LV) Algorithm 1986, 1989: This

algorithm is similar to the Knuth–Morris–Pratt

algorithm [4], where an array is derived from

preprocessing the patterns. The text string is

examined from left to right, and known information

is exploited to reduce the number of character

comparisons required [34] [35].

Chang–Lampe (CL) Algorithm 1992: It is a variation

form of the dynamic programming array. It is based

on a "column partition" approach, by exploiting a

different property of the dynamic programming

matrix. The algorithm again considers the fact that,

along each column, the numbers are normally

increasing [36].

2.2.2 Counting Method

Counting method based on arithmetic operations,

thus it uses counters for every position of the text.

Baeza–Yates–Perleberg algorithm (BYP) Algorithm

1996: This algorithm is very practical and simple

solution to the string searching with k mismatches

problem and its performance is independent of k [37].

2.2.3 Deterministic Finite Automata Method

This approach model the search with a

nondeterministic automaton (NFA).

Ukkonen (CUTOFF) Algorithm 1985: This algorithm

proposed the idea of deterministic finite automaton

(DFA). Its try to improve sellers algorithm [32], by

considering the advantage of the geometric properties

of the dynamic programming array i.e. values in

neighbor cells differ at most by one. This is done by

computing part of the dynamic programming array.

But this algorithm has a large number of automaton

states. So, we need large time and space requirements

which may limit the applicability of this algorithm

[38].

Wu–Manber–Myers Algorithm 1996: This algorithm

try to solve Ukkonen Algorithm [38] space

requirements by using a Four Russians technique

[39].

Kurtz and Navarro Algorithm 1996, 1997: This is

another solution to the space requirements problem

by building the automaton in lazy form, i.e. build

only the states and transitions actually reached in the

processing of the text in Hamming approach. The

automaton starts as just one initial state and the states

and transitions are built as needed. By doing this, all

those transitions that Ukkonen [38] considered and

that were not necessary, were not built in fact [40]

[41].

2.2.4 Bit-Parallelism Method

This approach is a general way to simulate

simple nondeterministic finite automata (NFA)

instead of converting them to deterministic one by

performing many operations in parallel.

Shift-Or (SO) Algorithm 1992: The algorithm

searches a pattern in a text (without errors) by

parallelizing the operation of a nondeterministic

finite automaton that looks for the pattern. It is treat

mismatches by counting k differences using a counter

of size log2, specifically, the bigger the number of

bits needed to represent individual states, the smaller

the length of patterns that are considered [20].

Tarhio–Ukkonen (TUD) Algorithm 1993: This

algorithm performs filtering using Boyer–Moore–

Horspool [6] techniques to filter the text. It

generalizes both the right-to-left scanning of the

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 149 | P a g e

pattern and the computation of shift distances to

allow string matching with k-mismatches. It shifts

the pattern to a position such that the rightmost k + 1

text characters in the previous alignment have at least

one match. The shift distance is defined as the

minimum one that satisfies the above condition [42].

Linear Expected Time (LET) Algorithm 1994: The

algorithm work by traversing the text linearly, and at

each time the longest pattern substring that matches

the text is maintained. When the substring cannot be

extended further, it starts again from the current text

position. The algorithm uses a suffix tree on the

pattern to determine in a linear pass the longest

pattern substring that matches the text seen up to now

[43].

Baeza-Yates (BYN) Algorithm 1996, 1999: This

algorithm provide bit-parallel formula for diagonals

parallelization using bits of the computer word,

basing on backing the automaton along diagonals

instead of rows or columns [27].

Myers (MYE) Algorithm 1998, 1999: This algorithm

is based on bit parallel simulation of the dynamic

programming array (matrix), by representing the

differences along columns instead of the columns

themselves [27].

2.2.5 Filtering Method

This method based on finding fast algorithms to

drop a large number of characters from the text that

cannot be matched and apply another matching

algorithm for the remaining text, based on simple

dynamic programming approach.

Baeza-Yates (BYPEP) Algorithm 1996: This

algorithm combines the pattern partition approach

with multiple string searching algorithms, by building

an Aho–Corasick machine [17], to search for

multiple patterns. Every match found, it extend the

match, by checking if there are at most k differences,

basing on the standard dynamic programming

algorithm to check the edit distance between two

strings [37].

COUNT Algorithm 1997: This algorithm performs

filtering based on searching for substrings of the text

whose distribution of characters differs from the

distribution of characters in the pattern at most as

much as it is possible under k differences [44].

2.3 Recent Updated and Hybrid String

Matching Algorithms

In the last decade more than 50 new algorithms

have been proposed for the string matching approach

[2]. From literature we find that these algorithms

either a kind of variations of the previous algorithms

or a hybrid form that combines the features of these

algorithms. We present these recent algorithms

according to the main idea that leads to them.

2.3.1 Updated String Matching Algorithms

Navarro and Raffinot Algorithm 2000: This

algorithm based on suffix automata. It is an

adaptation to the exact string matching algorithm,

BNDM [21], to allow errors. It is build a NFA to

search the reversed pattern allowing errors, modify it

to match any pattern suffix, and apply essentially the

same BNDM algorithm using this automaton. A

recent software program, called fnem nrgrepg,

capable of fast, exact, and approximate searching of

simple and complex patterns has been built with this

method [45].

Yuebin Bai and Hidetsune Kobayashi‘s String

Matching Algorithm 2003: This algorithm based on

Boyer-Moore-Horspool algorithm [6]. Where in the

preprocessing stage it generate an array NEXT which

is used to decide the next position for next search,

which is the first reference point. This means that it

does not use the match heuristic. The pattern is

compared from right to left with the text. After a

complete match or in case of a mismatch, the pattern

is shifted according to the pre-computed function

[46].

The AKC Algorithm 2003: This algorithm is an

updated form of Apostolico-Giancarlo algorithm [7].

At each search it scans the window characters from

right to left and remembers every factors of the text

that matches a suffix of the pattern during previous

searches. Then, at the end of each search when the

pattern is shifted, the AKC algorithm ensure that each

text factor that previously matched a suffix of the

pattern still match a factor of the pattern [47].

Simplified BNDM (SBNDM) Algorithm 2003:

Additionally this algorithm is a variation of BNDM

[21], it differs in the main loop where it skips the

examining of longest prefixes. Which gives it lighter

shift computation than BNDM [48].

Long BNDM (LBNDM) Algorithm 2003: This

algorithm introduce a technique to handle long

patterns with BNDM [21]. Where the pattern is

partitioned in consecutive subpatterns. The leftmost

subpattern is searched with the standard BNDM

algorithm. Only when the match of the leftmost

subpattern is found, the rest of an alignment is

examined [48].

Shift-Vector Matching (SVM) 2003: This algorithm is

kind of brute force approach, which maintains a bit-

vector i.e. partial memory telling those positions

where an occurrence of the pattern cannot end in

order to transfer information from an alignment to

sub-sequent alignments. The shifting based on this

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 150 | P a g e

bit-vector. The problem of computation of shift

reduces to searching for the rightmost zero in a bit-

vector [48].

Two-way Nondeterministic DAWG Matching

(TNDM) Algorithm 2003: It is a two way variant of

the BNDM [21] algorithm which uses a backward

search and a forward search alternately. This

algorithm based on Backward Nondeterministic

DAWG Matching (BNDM) algorithm [21],

benefiting from the nice feature of BNDM is that it

simulates a nondeterministic automaton without

explicitly constructing it. The main idea is that if the

text character aligned with the end of the pattern is a

mismatch, BNDM scans back-wards in the text if the

conflicting character occurs elsewhere in the pattern.

In such a situation TNDM will scan forward, i.e. it

continues by examining text characters after the

alignment [48]. An improvement to the TNBM

algorithm is Forward-Non-deterministic-DAWG-

Matching (FNDM), which observed that generally the

forward scan for finding suffixes dominates over the

BNDM backward scan. So it substitutes the

backward BNDM check with a naive check of the

occurrence, when a suffix is found [49].

Fast-Search Algorithms 2003: Are a family of

algorithms that consists from three different variants

of the Boyer-Moore [5] algorithm presented by

Cantone and Faro [50]. The general base of these

algorithms that at the end of each attempt the shift is

computed with the bad character rule only if the first

comparison of the attempt is a mismatch and the shift

is computed using the good suffix rule otherwise. The

first algorithm is the Fast-Search (FS) algorithm that

compares the pattern with the current window

characters from right to left at each attempt the

pattern is compared with the current window

characters from right to left. Then the shift is

computed using the Horspool [6] bad-character rule if

and only if a mismatch occurs during the first

character comparison, otherwise the algorithm uses

the good-suffix rule. The second algorithm from this

family is the Backward-Fast-Search (BFS)

algorithm. The algorithm benefits from combining

the standard good-suffix rule with the bad-character

rule to get the backward good suffix rule. Finally the

Forward-Fast-Search (FFS) algorithm 2004, which

preserve the same structure as the Fast-Search

algorithm, but it uses a look-ahead character to

determine larger shift advancements called forward

good-suffix rule [51].

FAAST Algorithm 2005: It is a generalization to the

Tarhio-Ukkonen algorithm [42], by requiring two or

more matches when calculating shift distances, which

makes the approximate string matching process

significantly faster than the Tarhio-Ukkonen

algorithm. Instead of requiring at least one match in

the last k + 1 characters of the text in the previous

alignment, the new algorithm requires at least x

matches in the last k + x characters when calculating

shift distances, where x is a small integer value

(typically 2 or 3 in their experiments) [52].

The Wide Window (WW) Algorithm 2005: In this

algorithm each search is divided into two steps. The

first step consists in scanning the m rightmost

characters of the window from left to right starting

with the initial state until a full match or a lack of

transition. And the second step consists in scanning

the m−1 leftmost characters of the window from right

to left. An improvement to the WW algorithm is Bit

Parallel Wide Window Algorithm (BPWW) [53].

The Linear DAWG Matching (LDM) Algorithm

2005: The searching in this algorithm as in WW

algorithm [53], is also divided into two steps. The

first step consists in scanning the m leftmost

characters of the window from right to left starting

with the initial state until a full match or a lack of

transition. And the second step consists in scanning

the m rightmost characters of the window from left to

right [53].

Boyer-Moore-Horspool Algorithm Using

Probabilities 2006: An updated form of the Horspool

algorithm [6] by applying probabilities on the

symbols within the pattern, where there are different

probabilities for different symbols, the idea works by

changing the order in which the symbols of the

pattern are compared to the symbols of the current

window of the text such that the probability of a

mismatch is statistically maximized [54].

2Block Algorithm 2007: This algorithm is built on the

original Boyer-Moore algorithm [5]. The two key

ideas are to keep track of all the previously matched

characters within the current window and not to

move the searching position to the end of the pattern

when a mismatch occurs. This approach has

increased the average shift amounts and guarantees

that any character of the text is read at most once

[55].

Multi-Phase Dynamic Hash (MDH) String Matching

Algorithm 2007: Is an extension to Wu-Manber

algorithm [25]. The algorithm try to overcome the

SHIFT and HASH tables growing i.e. increasing

memory requirement in Wu-Manber algorithm by

using two compressed HASH table and PMT

(possible matching patterns) table with SHIFT table.

The first HASH table is the same as Wu-Manber

HASH table and for the second hash table, MDH

rehashes the SHIFT value and stores in the PMT

table. At each attempt the hash function for a block of

text of size B is calculated and then checking the

related SHIFT table entry. If the SHIFT value in not

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 151 | P a g e

zero the block is moved to right and so on. Otherwise

the hash function of this text block characters is

calculated again using the second hash function, now

identify the entry in PMT table by using the new hash

value. In the last step a verification for every possible

matching pattern linked in this entry and then moving

the text window right to restart the whole procedure

again [56].

Aho-Corasick with Magic states (ACMS) String

matching algorithm 2007: Is an adaptation to Aho-

Corasic algorithm [17], by reducing the memory

requirement without sacrificing speed by benefiting

from the characteristics of magic states in

deterministic finite state automata. The algorithm

rearrange the states, this is done into two steps, in the

first step it will find the magic states and in the

second step it will partition the transition matrix. If

the state is receiving the same input character, so that

state will have same next state and they are calling

this state as magic state. The transition matrix is

partitioned based on the threshold, first matrix will

have the state values that are smaller than the

threshold and second matrix is compressed by the

process to generate the Bitmap Matrix and State List

Matrix. The size of second matrix and Bitmap Matrix

are the same and every state of second matrix has one

state in State List Matrix. The search process works

by identifying all the elements in the second matrix,

if the element is not a magic state then the

corresponding location in Bitmap Matrix is set to 1

and the next state is inserted to State List Matrix,

otherwise the corresponding location in Bitmap

Matrix is set to 0. The entire algorithm is clearly

explained with example in [57].

Hashing Algorithms 2007: It is an adaptation of Wu-

Manber algorithm [25] as multiple string matching to

single string matching algorithm. The algorithm

introduced K parameter of the algorithm which

strongly affects the performance and the resulting

complexity. More details function and calculations

are presented by the author [58].

Two-Sliding-Windows (TSW) Algorithm 2008: Is a

variation of the Berry-Ravindran algorithm [14]. The

algorithm works by dividing the text into two equal

parts and searches for matches by using two windows

simultaneously. Where the first window scans the left

part of the text from left to right, while the second

window shifts from right to left scanning the right

part of the text. This gives a parallel search, which is

suitable for parallel processors structures. The TSW

algorithm uses the Berry-Ravindran [14] bad

character rule to calculate the shift value for better

shift values [59].

Boyer-MooreHorspool with q-grams (BMHq)

Algorithm 2008: It is a variation of Horspool

algorithm [6], where at each alignment of the pattern,

the algorithm reads and computes an integer i.e.

fingerprint for a q-gram of characters. The scanning

works by comparing the last q-gram of the pattern

with the corresponding q-gram in the current window

of the text, and then tests the equality of their

fingerprints [60].

The Extended-Backward-Oracle-Matching Algorithm

2008] it is very fast and flexible variation of the

Backward-Oracle- Matching algorithm [22]. It

introduces tries two subsequent transitions for each

iteration of the fast-loop with the aim to find with

higher probability an undefined transition [61].

Fast pattern matching for intrusion detection using

exclusion and inclusion filters (Exscind) Algorithm

2011: This algorithm try to reduce the number of

times to perform pattern matching. It is introduces an

exclusion-inclusion filter programmed only with

signatures prefixes, using a specially modified Wu-

Manber pattern matching algorithm. The exclusion-

inclusion filter is a modified Bloom filter that

produces a list of probable matching signatures for

each suspect packet [62].

Function and Data Parallelization of Wu-Manber

Pattern Matching for Intrusion Detection Systems

2012: This work introduces three parallel

implementations of the Wu-Manber pattern matching

algorithm [25]. The first implementation, the Shared

Position (SP) algorithm, utilizes several scanning

windows running in parallel and using a shared

position variable. The second implementation, the

Trace Distribution (TD) algorithm, divides the trace

equally among the parallel threads. The third

implementation (DSP) combines the first two

algorithms [63].

2.3.2 Hybrid String Matching Algorithms

SSABS and TVSBS Algorithms 2004: These

algorithms are a combination of the shifting method

of the Quick-Search algorithm [8] and the testing

method of the Raita algorithm [12]. This done by

comparing the rightmost and leftmost characters first,

and then continuing the comparison of the other

characters from right to left until a complete match or

a mismatch occurs. After each search, the shift of the

window is computed by the Quick-Search [8] bad

character rule for the next character to the window

[64].

Robust Quick String Matching (RQS) Algorithm

2006: This algorithm combines two heuristics, where

bad character heuristic and good suffix heuristic are

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 152 | P a g e

enhanced to improve the efficiency. In general the

bad character heuristic always uses the rightmost

character of the current window as the bad character,

so this provides the large shift value. For normal

good suffix heuristic the characters that are matched

will be forgotten, if they are remembered it can

reduce the comparisons. Both the bad character

heuristic and good suffix heuristic is calculated at

every checkpoint and goes with the heuristic which

has high shift value. If it is a good suffix heuristic

and if the matched characters are remembered we can

avoid the comparisons for next check points by

comparing only the remaining characters in the

patterns [65].

Franek-Jennings-Smyth (FJS) Algorithm 2007: It is a

hybrid algorithm that combines the linear worst case

time complexity of Knuth-Morris-Pratt algorithm [4]

and the sublinear average behavior of Quick-Search

algorithm [8]. Each attempt of the search is divided

into two phases. In the first phase, as with the Quick-

Search approach, the FJS algorithm first compares

the rightmost character of the pattern with its

corresponding character in the text, if a mismatch

occurs, a Quick-Search shift is used, when a match is

found the FJS algorithm invokes the second step.

Otherwise another Quick-Search shift occurs [2].

The second phase of the algorithm consists in a

Knuth-Morris-Pratt pattern-matching starting from

the leftmost character and, if no mismatch occurs,

then whether or not a match is found, a Knuth-

Morris-Pratt shift is performed followed by a return

to the first step [66].

The Forward-Backward-Oracle-Matching Algorithm

2008: This algorithm mixes the ideas of the

Extended-BOM algorithm [61] with those of the

Quick-Search algorithm [8] by focusing on the

character that follows the current window (the

forward character) while computing the shift

advancement [67]. For more improvement to this

approach is the bit-parallel version of the Forward-

BOM algorithm, which called Forward SBNDM

Algorithm (FSBNDM) [2].

The Genomic Oriented Rapid (GRASPm) Algorithm

2009: Is an algorithm that combines the shifting

method based on the Horspool [6] bad-character rule

and the filtering method based on a hash function

computed on 2-grams in the pattern [68].

Hybrid Multithreaded Pattern Matching Algorithm

2012: This algorithm based on two well-known

multiple pattern matching algorithms Wu-Manber

[25] and Aho-Corasick [17]. Where the algorithm

benefits from wu-manber power in matching long

patterns and Aho-Corasick for short patterns. It

divide the patterns between the two algorithms to

keep the workloads balanced for optimal

performance. Additionally multiple threads are used

to maximize the performance of the hybrid algorithm

[69].

III. RELATED WORK
Several works are introduced to summarize and

explore current techniques to cope with the problem

of string matching.

Gonzalo Navarro 2001 [27] presented a tour to

approximate string matching algorithm according to

the pattern length and the time complexity for

different string matching classes. This classification

is more complete, since it considerers exact string

matching algorithm basing on wider area of

classification.

P.D. Michailidis and K.G. Margaritis 2001, 2002

[3] [31] proposed two surveys, one focused on on-

line exact string matching algorithms, while the other

considered on-line approximate string matching

algorithm. Both of them also provide experimental

results of each class, in order to explore its good and

weakness aspects, and to make it easier for

appropriate application deployment.

Christian Charras and Thierry Lecroq 2004 [15]

presented a book that investigate exact string

matching algorithm in details, including the main

idea and application and the source code of the

available exact string matching algorithms.

Simone Faro and Thierry Lecroq 2010, 2013

[70] [2] provided two strong surveys, the first one

[70] gave a comprehensive experimental evaluation

for exact string matching algorithms. The second one

[2] reviewed the string matching algorithms which

have been proposed in the last decade 2000-2010 and

presented experimental results in order to bring order

among the dozens of articles published in recent

years.

Vidya SaiKrishna, Prof. Akhtar Rasool, and

Nilay Khare 2012 [9] explored the various diversified

fields where string matching has an eminent role to

play and is found as a solution to many problems.

Kamal Alhendawi and Ahmad Baharudin 2013

[71] introduced a short survey for five of well-

known string matching algorithms, including

theoretical analysis, empirical testing of the execution

time based on the change of two factors (text size and

pattern size), then it measured the efficiency of each

string matching algorithm in term of estimated

execution time.

While Gulfishan Firdose Ahmed and Nilay

Khare 2014 [72] presented a survey of several

hardware based string matching algorithms such as

Brute Force, KMP [4], and Aho-Corasicks [17] with

their applications.

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 153 | P a g e

IV. HOW TO USE THE SURVEY
During the design of this survey, we try to select

significant features of string matching algorithm.

How can this survey be used?

A map of string matching research field. For beginner

researchers, this survey provides a comprehensive

overview for a quick introduction to the string

matching field. While experienced researchers can

extend this survey to structure and organize their

knowledge in this field. This should lead to defining

new directions for string matching research.

Exploring new string matching strategies. This

survey explored a few strategies seen infrequently in

the wild.

Common vocabulary. This survey offer a common

vocabulary for string matching mechanisms.

Understanding string matching constrains. This

survey highlights common performance constraints,

so understanding these problems will attract research

efforts on solving them.

V. CONCLUSION
String matching field contains numerousness

mechanisms, which darks a global view of the string

matching approach. This paper is an attempt to clear

the ambiguity and structure the knowledge in this

field. One benefit we foresee from this survey is that

of keeping easier cooperation among researchers.

Good surveys will facilitate communication and offer

a common language for discussing solutions. They

will also clarify how different mechanisms are likely

to work in concert, and identify areas of remaining

weaknesses that require additional work.

There is a pressing need for the research

community to develop common metrics for string

matching evaluation. Surveys will be helpful in

shaping these tasks.

The proposed survey is not complete. Since new

matching approaches will appear, that cannot be

imagined. May they will highlight new features for

classification. We hope this survey will offer a

foundation for classifying string matching algorithms

in intrusion detection systems. So as the field grows,

the survey will also grow and be refined.

REFERENCES
[1] Y. Hong, X. Ke, and C.Yong, “An

improved Wu-Manber Multiple Patterns

Matching Algorithm”, in Performance,

Computing, and Communications

Conference, IPCCC 2006. 25th IEEE

International, 6 pp. – 680, 2006.

[2] S. Faro, T. Lecroq, “The Exact Online String

Matching Problem: a Review of the Most

Recent Results”, ACM Computing Surveys

(CSUR) Surveys Homepage archive,

Volume 45 Issue 2, Article No. 13,

February 2013.

[3] P. Michailidis and K. Margaritis, “On-line

String Matching Algorithms: Survey and

Experimental Results”, International

Journal of Computer Mathematics,

 volume 76, Issue 4, 2001.

[4] D. Knuth, J. Morris, and V. Pratt, “Fast

pattern matching in strings”, SIAM Journal

on Computing, volume 6(1), 322–350.

(1977).

[5] R. Boyer, J. Moore, “A fast string searching

algorithm”, Communication of the ACM,

volume 20(10), 762–772, (1977).

[6] R. HORSPOOL, “Practical fast searching

in strings”, Softw. Pract. Exp., Volume 10,

6,

[7] A. Apostolico, and R. Gianarlo, “The Boyer-

Moore-Galil string searching strategies

revisited”, SIAM J. Comput., Volume 15, 1,

98–105, 1986.

[8] D. Sunday, “A very fast substring search

algorithm”, Communications of the ACM,

Volume 33, No. 8, pp.132-142, 1990.

[9] V. SaiKrishna, A. Rasool, and N. Khare,

“String Matching and its Applications in

Diversified Fields”, International Journal of

Computer Science Issues (IJCSI), Volume 9

Issue 1, p219-226, Jan2012.

[10] P. Smith, “Experiments with a very fast

substring search algorithm”, Softw. Pract.

Exp., Volume 21, No. 10, pp. 1065-1074,

1991.

[11] L. Colussi, “Correctness and e efficiency of

the pattern matching algorithms”,

Information and Computation, Volume 95

Issue 2, Dec. 1991.

[12] T. Raita, “Tunning the Boyer-Moore-

Horspool string searching algorithm”,

Software- Practice and Experience, Volume

22, No. 10, pp. 879-884, 1992.

[13] M. Crochemore, A. Czumaj, L. Gasieniec,

S. Jarominek, T. Lecroq, W. Plandowski,

and W. Rytter, “Speeding Up Two String

Matching Algorithms”, Algorithmica,

Volume 12, No. 4-5, pp. 247-267, 1994.

[14] T. Berry, and S. Ravindran, “A fast string

matching algorithm and experimental

results”, In: Holub, J., Simánek, M. (eds.)

Proceedings of the Prague Stringology Club

Workshop 1999, Collaborative Report DC-

99-05, Czech Technical University, Prague,

Czech Republic, pp. 16-26, 2001.

http://www.tandfonline.com/toc/gcom20/76/4

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 154 | P a g e

[15] C. Charras, and T. Lecroq, Handbook of

exact string matching algorithms. King’s

College Publications, 2004.

[16] A. Aho, J. Hopcroft, and J. Ullman, The

design and analysis of computer algorithms,

Addison-Wesley, 1974.

[17] A. Aho and M. Corasick. “Efficient string

matching: An aid to bibliographic search”,

Communications of the ACM, volume 18(6),

pp. 333-340, 1975.

[18] M. Aldwairi, T. Conte, and P. Franzo,

“Configurable String Matching Hardware

for Speeding up Intrusion Detection”, ACM

SIGARCH Computer Architecture News,

volume 33(1):99–107, 2005.

[19] B. Commentz-Walter, “A string matching

algorithm fast on the average”, in Proc. 6th

International Colloquium on Automata,

Languages, and Programming, pp. 118-132,

1979.

[20] R. Baeza-Yates, and G. Gonnet, “A new

approach to text searching”,

Communications of the ACM, Volume 35,

No. 10, pp. 74-82, 1992.

[21] G. Navarro, M. Raffinot, “A Bit-Parallel

Approach to Suffix Automata: Fast Extended

String Matching”, in Proc. of the 9th Annual

Symposium on Combinatorial Pattern

Matching, No. 1448, pp. 14-33, Springer-

Verlag, Berlin, 1998.

[22] C. Allauzen, M. Crochmore, and M.

Raffinot, “Factor oracle: a new structure

for pattern matching”, In OFSEM '99

Proceedings of the 26th Conference on

Current Trends in Theory and Practice of

Informatics on Theory and Practice of

Informatics, pp. 295-310, 1999.

[23] C. harras, and T. Lecroq, “Exact string

matching algorithms”, Technical Report,

1997.

[24] T. Lecroq, and M. Christian, “Exact

String Matching Algorithms,” Laboratoire

d'Informatique de Rouen, June 2004, Web

page: http://www-igm.univ-

mlv.fr/~lecroq/string/index.html, accessed

7.6.2014.

[25] S. Wu, and U. Manber, “Fast algorithm for

multi-pattern searching”, Technical Report

TR94-17, University of Arizona at Tuscon,

1994.

[26] S.Wu, and U. Manber, “Fast text searching

allowing errors”, Communications of the

ACM, volume 35(10), 83–91, 1992.

[27] G. Navarro, “A Guided Tour to Approximate

String Matching”, ACM Computing Surveys,

Volume 33 Issue 1, Pages 31-88, March

2001 .

[28] D. Sankoff, S. Andmainville, “Common

Subsequences and Monotone

Subsequences”, Addison-Wesley, Reading,

MA, 363–365, 1983.

[29] V. Levenshtein, “Binary codes capable of

correcting spurious insertions and deletions

of ones”, Probl. Inf. Transmission, volume

1, 8–17, 1965.

[30] R. Wagner, and M. Fischer, “The string to

string correction problem”, Journal of

theAssociation for Computing Machinery,

volume 21(1), 168–173.

[31] P. Michailidis, K. Margaritis, “On-line

approximate string searching algorithms:

survey and experimental results”,

International Journal of Computer

Mathematics, Intern. J. Computer Math.,

Volume 79(8), pp. 867–888, 2002.

[32] P. Sellers, “The Theory and Computation of

Evolutionary Distance: Pattern

Recognition”, Journal of Algorithms,

volume 1(4), 359–373, 1980.

[33] E. Ukkonen, “Algorithms for approximate

string matching”, Information and Control,

volume 64, 100–118, 1985a. Preliminary

version in Proceedings of the International

Conference Foundations of Computation

Theory (LNCS, vol. 158, 1983).

[34] G. Landau, and U. Vishkin, “Efficient string

matching with k mismatches”, Theoretical

Computer Science, volume 43(2–3), 239–

249, 1986.

[35] G. Landau, and U. Vishkin, “Fast parallel

and serial approximate string matching”,

Journal of Algorithms archive, Volume 10

Issue 2, June 1989.

[36] W. Chang, and J. Lampe, “Theoretical and

Empirical Comparisons of approximate

string matching algorithms”, In Proc. of the

3rd Annual Symposium on Combinatorial

Pattern Matching, No. 664 (Springer-

Verlag, Berlin), pp. 175–184, 1992.

[37] R. Baeza-Yates, and C. Perleberg, “Fast and

practical approximate string matching”,

Information Processing Letters, volume

59(1), 21–27, 1996.

[38] E. Ukkonen, “Finding approximate patterns

in strings”, Journal of Algorithms volume,

volume 4(1–3), 132–137, 1985.

[39] S. Wu, U. Manber, and G. Myers, “A

subquadratic algorithm for approximate

limited expression matching”, Algorithmica,

volume 15(1), 50–67, 1996.

[40] S. Kurtz, “Approximate string searching

under weighted edit distance”, In: Proc. of

the 3rd South American Workshop on String

Processing (Carleton University Press), pp.

156–170, 1996.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.1068
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.1068
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.1068

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 155 | P a g e

[41] G. Navarro, “A partial deterministic

automaton for approximate string

matching”, In Proc. of the 4th South

American Workshop on String Processing

(Carleton University Press), pp. 112–

124,1997.

[42] J. Tarhio, and E. Ukkonen, “Approximate

boyer-moore string matching, SIAM”,

Journal on Computing, volume 22(2), 243–

260, 1993.

[43] W. Chang, and E. Lawler, “Sublinear

approximate string matching and biological

applications”, Algorithmica, volume 12, 4/5,

327–344, 1994.

[44] G. Navarro, “Mutiple approximate string

matching by counting”, In Proc. of the 4th

South American Workshop on String

Processing (Carleton University Press), pp.

125–139, (1997).

[45] G. NAVARRO, 2000b. Nrgrep: “A fast and

flexible pattern matching tool”, Software—

Practice & Experience, Volume 31 Issue 13,

November 10, 2001.

[46] B. Yuebin, and H. Kobayashi, “New string

matching technology for network security”,

Advanced Information Networking and

Applications, AINA 2003. 17th International

Conference, pp198 -201, 27-29 March 2003.

[47] M. Ahmed, M. Kaykobad, and R.

Chowdhury, “A new string matching

algorithm”, Int. J. Comput. Math. Volume

80, 7, 825–834, 2003.

[48] H. Peltola, and J. Tarhio, “Alternative

algorithms for bit-parallel string matching”,

In Proceedings of the 10th International

Symposium on String Processing and

Information Retrieval SPIRE’03, M. A.

Nascimento, E. S. de Moura, and A. L.

Oliveira, Eds. Lecture Notes in Computer

Science, vol. 2857. Springer-Verlag, Berlin,

Manaus, Brazil, 80–94, 2003.

[49] J. Holub, and B. Urian, “Fast variants of bit

parallel approach to suffix automata”, In the

Second Haifa Annual International

Stringology Research Workshop of the

Israeli Science Foundation, http: // www.

cri. haifa. ac. il/ events/ 2005/ string/

presentations/ Holub. pdf ,accessed

8/07/2014.

[50] D. Cantone, S. Faro “Fast-Search: a new

efficient variant of the Boyer-Moore string

matching algorithm”, In WEA 2003.

Lecture Notes in Computer Science, vol.

2647. Springer-Verlag, Berlin, 247– 267.

[51] D. Cntone, and S. Faro, “Searching for a

substring with constant extra-space

complexity” In Proc. of Third International

Conference on Fun with algorithms, P.

Ferragina and R. Grossi, pp.118–131, 2004.

[52] Z. Liu, J. Borneman, and T. Jiang, “A Fast

Algorithm for Approximate String Matching

on Gene Sequences”, Combinatorial Pattern

Matching Lecture Notes in Computer

Science, Volume 3537, pp 79-90, 2005.

[53] L. He, B. Fang, and J. Sui, “The wide

window stringmatching algorithm”, Theor.

Comput. Sci., volume 332, 1- 3, 391–404,

2005.

[54] M. NEBEL,"Fast string matching by using

probabilities: on an optimal mismatch

variant of Horspool’s algorithm”, Theor.

Comput. Sci. volume 359, 1, 329–343, 2006.

[55] M. Sustik, and J. Moore, “Strin/g searching

over small alphabets”, In Technical Report

TR-07-62. Department of Computer

Sciences, University of Texas at Austin,

2007.

[56] Z. Zhou, Y. Xue, J. Liu, W. Zhang and J. Li,

“MDH: A High Speed Multi-phase Dynamic

Hash String Matching Algorithm for Large-

Scale Pattern Set”, ICICS 4861, pp. 201-

215, 2007. Lecture Notes in Computer

Science, Volume 4861, pp 201-215, 2007.

[57] N. Huang; Y. Chu; C. Hsieh; Chi-Hung

Tsai; Yih-Jou Tzang; , "A Deterministic

Cost-effective String Matching Algorithm for

Network Intrusion Detection System,"

Communications, 2007. ICC '07. IEEE

International Conference, pp.1292-1297,

24-28 June 2007, URL, accessed 09/7/2014:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp

=&arnumber=4288889&isnumber=4288671

[58] T. Lecroq, “Fast exact string matching

algorithms”, Inf. Process. Lett. Volume 102,

6, 229–235, 2007.

[59] A., Hudaib, R. Al-khalid, D. Suleiman, M.

Itriq, and A. Al-anani, “A fast pattern

matching algorithm with two sliding

windows (TSW)”, J. Comput. Sci., volume 4,

5, 393–401, 2008.

[60] P. Kalsi, H. Peltola, and J. Tarhio, 2008.

“Comparison of exact string matching

algorithms for biological sequences”, In

Proceedings of the Second International

Conference on Bioinformatics Research and

Development, BIRD’08, 2008.

[61] S. Faro, and T. Lecroq, “Efficient variants of

the Backward-Oracle-Matching algorithm”,

In Proceedings of the Prague Stringology

Conference 2008, J. Holub and J. ˇZ ˇd

´arek, Eds. Czech Technical University in

Prague, Czech Republic, 146–160.

[62] M. Aldwairi, and D. Alansari, “Exscind:

Fast pattern matching for intrusion

detection using exclusion and inclusion

http://link.springer.com/book/10.1007/b137128
http://link.springer.com/book/10.1007/b137128
http://link.springer.com/book/10.1007/b137128
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

Koloud Al-Khamaiseh Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 2), July 2014, pp.144-156

 www.ijera.com 156 | P a g e

filters”, Next Generation Web Services

Practices (NWeSP), 2011 7th International

Conference on, pp. 24-30, 2011.

[63] M. Kharbutli, M. Aldwairi, and Abdullah

Mughrabi, “Function and Data

Parallelization of Wu-Manber Pattern

Matching for Intrusion Detection Systems”,

Network Protocols & Algorithms, volume

4(3), 2012.

[64] S. Sheik, S. Aggarwal, A. Poddar, N.

Balakrishanan, and K. Sekar, “A fast

pattern matching algorithm”, J. Chem. Inf.

Comput. Volume 44, 1251–1256, 2004.

[65] M. NEBEL, “Fast string matching by using

probabilities: on an optimal mismatch

variant of Horspool’s algorithm”, Theor.

Comput. Sci. volume 359, 1, 329–343, 2006.

[66] F. Franek, C. Jennings, and W. Smyth, “A

simple fast hybrid pattern-matching

algorithm”, J. Discret. Algorithms, volume

5, 4, 682–695, 2007.

[67] S. Faro, and T. Lecroq, “Efficient variants of

the Backward-Oracle-Matching algorithm”,

In Proceedings of the Prague Stringology

Conference 2008, J. Holub and J. ˇZ ˇd

´arek, Eds. Czech Technical University in

Prague, Czech Republic, 146–160.

[68] S. Deusdado, and P. Carvalho, “GRASPm:

an efficient algorithm for exact pattern-

matching in genomic sequences”, Int. J.

Bioinformatics Res. Appl. Volume 5, 4, 385–

401, 2009.

[69] M. Aldwairi, and N. Ekailan, “Hybrid

Multithreaded Pattern Matching Algorithm

for Intrusion Detections Systems”, Journal

of Information Assurance and Security,

Volume 6 (2011) pp. 512-521, 2011.

[70] S. Faro, and T. Lecroq, “The exact string

matching problem: a comprehensive

experimental evaluation”, Report arXiv:

1012.2547, 2010.

[71] K. Hendawi, and A. Baharudin, “String

Matching Algoritms (SMAs): Survey &

Empirical Analysis”, Journal of Computer

Sciences and Management, Volume 2, Issue

5, 2013.

[72] G. Ahmed and N. Khare, “Hardware based

String Matching Algorithms: A

Survey”, International Journal of Computer

Applications, volume 88(11):16-19,

February 2014.

